
会员
智能搜索和推荐系统:原理、算法与应用
更新时间:2021-01-29 11:56:58 最新章节:12.8 本章小结
书籍简介
本书分为4大部分。第一部分(第1~3章):搜索推荐系统的基础。首先介绍数学与统计学是现代机器学习理论的基础;其次介绍搜索推荐系统的常识;最后,描述知识图谱相关基础理论。第二部分(第4~6章):搜索系统的基本原理。主要内容包括:搜索系统框架及原理、主要算法以及搜索系统相关评价指标。第三部分(第7~9章):推荐系统的基本原理。主要内容包括:推荐系统框架及原理、主要算法以及推荐系统相关评价指标。第四部分(第10~12章):应用。首先介绍三种常见的搜索引擎工具;其次讲述搜索引擎和推荐系统两个方向的应用。
品牌:机械工业出版社
上架时间:2021-01-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
同类热门书
最新上架
- 会员本书介绍了Docker和Kubernetes的相关知识,可以帮助读者快速了解并熟练配置Kubernetes。本书共分为16章。首先介绍了Docker基础和Docker进阶;然后介绍了Kubernetes的基础操作,包括部署Kubernetes集群、升级Kubernetes、创建及管理Pod等;之后重点介绍了存储管理、密码管理、Deployment、DaemonSet及其他控制器、探针、Job、服务计算机8.6万字
- 会员本书从网页开发的基础知识HTML5、CSS、JavaScript开始,以项目实战的方式介绍如何构建自适应网页,并通过工具免费发布自己的网站。在后面的章节中,以主流的3D框架ThreeJS为技术支撑,在网页中编写JavaScript代码,让读者构建完整的3D应用场景。计算机0字
- 会员本书系统地介绍了如何利用AI助手Copilot和ChatGPT来提升Python编程的效率和质量。本书从AI助手的基础概念讲起,逐步深入到代码组织、阅读、测试、提示工程等关键技能,并引导读者通过实践掌握如何拆解复杂问题、查找和修复bug、自动化任务处理及开发计算机游戏。本书不仅提供了丰富的实例和练习,还探讨了AI助手的潜力和局限,以及未来的发展趋势,是希望在编程领域融入AI技术的读者的理想选择。本计算机17.2万字
- 会员本书全面介绍了Web标准的三个主要组成部分:HTML、CSS和JavaScript。循序渐进的讲述Web开发所涉及的三大前端技术的内容、应用技巧以及它们的综合应用。每部分都配置了大量的实用案例,图文并茂,效果直观。全书共21章,分为四个部分。在HTML部分,系统介绍了主要讲述了主要讲述了HTML基本概念、常用文本标签、文档结构标签、在网页中插入多媒体内容、列表、DIV标签、元素类型、在网页中创建超计算机13.2万字
- 会员本书从网络工程师的视角出发,详细讲解了Python在网络运维自动化中的应用,其中涉及Python网络运维自动化的相关技术、工具以及实践。本书共10章,先对Python网络运维自动化进行了全面的概述,然后讲解了网络工程师所需的Python基础、数据格式与数据建模语言的相关知识。接着,本书介绍了网络配置的结构化数据提取、网络配置的模块化管理、Netmiko详解与实践、模型驱动的新网络管理方式及实践、网计算机13.3万字
- 会员本书立足于新工科和工程教育,从工程应用和实践者的视角,全面系统地介绍了目前在工业界中使用最为广泛的JDK8的全部核心知识。全书共17章,主要内容包括Java概述、Java基本类型与运算符、程序流程控制、数组、类与对象、抽象类、接口与嵌套类、GUI编程、Swing高级组件、异常与处理、I∕O流与文件、多线程与并发、容器框架与泛型、字符串与正则表达式、反射与注解。本书适合可作为普通高等院校、高职院校计算机21万字
- 会员本书为广受读者喜爱的畅销书升级版,旨在让读者快速、简单地上手大模型应用开发。本书为初学者提供了一份清晰、全面的“最小可用知识”,带领你快速了解GPT-4和ChatGPT的工作原理及优势,并在此基础上使用流行的Python编程语言构建大模型应用。升级版在旧版的基础上进行了全面更新,融入了大模型应用开发的最新进展,比如RAG、GPT-4新特性的应用解析等。本书提供了大量简单易学的示例,帮你理解相关概念计算机13.1万字
- 会员本书分为9篇,共35章。第1篇主要介绍基本配置;第2篇主要介绍用户及权限管理;第3篇主要介绍网络相关配置;第4篇主要介绍存储管理;第5篇主要介绍系统管理;第6篇主要介绍软件管理;第7篇主要介绍安全管理;第8篇主要介绍容器管理;第9篇主要介绍自动化管理工具ansible的使用。计算机12.4万字
- 会员近年来,人工智能技术得到了快速发展,并在金融风险管理领域逐渐渗透。本书旨在引导读者了解金融风险建模背后的理论,学会在金融风险管理业务中运用Python语言和一系列机器学习模型。本书分为三部分,第一部分(第1~3章)介绍风险管理的基础知识,第二部分(第4~8章)通过一系列案例将机器学习模型运用到市场风险管理、信用风险管理、流动性风险管理和运营风险管理等场景,第三部分(第9章、第10章)讲解如何对其他计算机8.6万字